
Lecture 2: Intro to Concurrent 
Processing 

• The SR Language. 

• Correctness and Concurrency. 

• Mutual Exclusion & Critical Sections. 

• Software Solutions to Mutual Exclusion.  

• Dekker’s Algorithm. 

• The Bakery Algorithm. 
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A Model of Concurrent Programming 

• A concurrent program may be defined as the interleaving of sets of 
sequential atomic instructions. 
– i.e. a set of interacting sequential processes, execute at the same time, on the 

same or different processors.  

– processes are said to be interleaved, i.e. at any given time each processor is 
executing one of the instructions of the sequential processes.  

– relative rate at which the instructions of each process are executed is not 
important. 

• Each sequential process consists of a series of atomic instructions.  

• Atomic instruction is an instruction that once it starts, proceeds to 
completion without interruption.  

• Different processors have different atomic instructions , and this can 
have a big effect. 
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My First Piece of SR Code 

• Obviously different interleavings can produce different results. 
• This code is written in a language called SR or Synchronising 

Resources. 
• SR has an exceptionally rich set of concurrency mechanisms. 
• It will serve as the main language for demonstrating concurrency in 

this course.  
• Details on SR syntax can be found at 

http://elvis.rowan.edu/~hartley/OSusingSR/SR.html 
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Var N : Int := 0; 

# Two Processes share a common 

# variable 

 

Process P1 

 N := N + 1 

end  

  

 

 

 

Process P2 

 N := N + 1 

end 



A Digression into SR 
• SR concurrent programming language has been around, in various 

forms, for a number of years.   

• Later versions have provided additional mechanisms for remote 
procedure call, dynamic process creation, and semaphores, as well 
as a means for specifying distribution of program modules.   

• An SR program can execute within multiple address spaces, located 
on multiple physical machines.  

• Processes within a single address space can also share objects. 

• Thus, SR supports programming in distributed environments as well 
as in shared-memory environments.   
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A Digression into SR (cont’d) 

• SR’s model of computation allows a program to be split into one or 
more address spaces called virtual machines.  

• Each virtual machine defines an address space on one physical 
machine.  

• Virtual machines are created dynamically and referenced indirectly 
through capability variables.  

• Virtual machines contain instances of two related kinds of modular 
components: globals and resources.  Hence an SR program is a 
collection of resources and globals. 
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A Digression into SR (cont’d) 
• The figure summarizes SR’s model of computation. 

• In its simplest form, an SR program consists of a single VM running 
on one physical machine, maybe a shared-memory multiprocessor.  

• A program can also consist of multiple virtual machines executing 
on multiple physical machines.  

• Hybrid forms are possible and in fact useful. 
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A Digression into SR (cont’d) 
• Data & processor(s) are shared within a VM; different VMs can 

be placed on (distributed across) different physical machines. 

• Processes on the same or different VMs can communicate 
through operation invocation.  

• Operations may be invoked directly through the operation’s 
declared name or through a resource capability variable or 
indirectly through an operation capability variable. 

• Formally, a resource is a template for resource instances from 
which resource instances can be dynamically created and 
destroyed.   

• A global is basically a single, unparameterised, automatically 
created  instance of a resource. 
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SR: Resources 
• A resource is an abstract data object that consists of two parts: 

– a specification that specifies the interface of the resource, and 

– a body with code implementing the behaviour of abstract data object. 

• The general form of a resource is: 
 

resource resource_name 

 imports # maybe it uses other resources (more later) 

 constants, types, or operation declarations 

body resource_name (parameters) 

 imports 

 declarations, statements, procs 

 final code 

end resource_name 
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SR: Resources (cont’d) 
• Some code to define a Stack resource is shown 
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resource Stack 

type results = enum(OK,OFLOW,UFLOW) 

op push (item:int) returns r:result 

op pop (res_item:int) returns 

   r:result 

 

body Stack (size:int) 

var store [1:size]:int, top:int := 0 

 

proc push (item) returns r 

 if top < size ->  

  store[++top] := item 

  r := OK 

 [] top = size -> 

  r := OFLOW 

 fi 

end 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

proc pop (item) returns r 

 if top > 0 -> 

  item := store[top--] 

  r := OK 

 [] top = 0 -> 

  r := UFLOW 

 fi 

end 

end Stack 



SR: Creating Resources Instances 
• Since several instances of a resource can be created some mechanism 

is necessary to distinguish between the different resource instances.  

• Done by resource capabilities, pointers to a specific resource instance.  

• The code below creates 2 instances of a stack resource: 
resource Stack_User 

import Stack  # import as want to use Stack’s procs 

var x: Stack.result 

var s1,s2: cap Stack # stack capability variables, each with own 

var y:int  # local vars store & top 

  

s1:=create Stack(10) # create a stack of size 10 

s2:=create Stack(20) # create a stack of size 20 

 ... 

s1.push(4);   # how operations can be ref’d outside Stack via CVs 

s1.push (37); s2.push (98) 

if (x := s1.pop(y)) != OK -> ... fi 

if (x := s2.pop(y)) != OK -> ... fi 

 ... 

end 
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SR: Destroying Resources Instances 

• The execution of an SR program begins with the implicit creation of 
one instance of the program’s main resource.  

• The initial code of the main resource can in turn create instances of 
other resources. 

• A resource instance can be destroyed by the destroy statement: 

 destroy resource_capability 

• When an SR program terminates, the initially created instance of the 
main resource is destroyed after executing its final code.  

• This final code can in turn destroy other instances of resources. 
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SR Processes 
• SR uses the process as its unit of concurrent computation.   This is an independent 

thread of control executing sequential code, with the form 

 process process_name (quantifier, quantifier, ...) 

  block 

 end 

• The code demonstrates the use of processes for parallel matrix multiplication. 
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resource main( ) 

const N := 20 

var a[N,N], b[N,N], c[N,N]: real 

  

# read in some initial values for a,b 

 ... 

# multiply a,b in parallel,result=c 

  

process multiply(i:=1 to N,j:=1 to N) 

 var inner_prod:real := 0.0 

  

 fa k := 1 to N -> 

inner_prod+:=a[i,k]*b[k,j] 

 af 

 c[i,j] := inner_prod 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

final 

 # output result in c 

 fa i := 1 to N -> 

fa j:= 1 to N -> 

 write (c[i, j], ‘ ‘) 

af 

write 

 af 

end 

end mult 

 



A First Attempt to Define Correctness 

• If the processor includes instructions like INC then this program will 
be correct no matter which instruction is executed first.  

• If all arithmetic must be performed in registers then the following 
interleaving does not produce the desired results. 

P1: load reg,  N 

P2: load reg,  N 

P1: add reg,  #1 

P2: add reg,  #1 

P1: store reg,  N 

P2: store reg,  N 

• A concurrent program must be correct under all possible 
interleavings. 
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Correctness: A More Formal Definition 

• If 𝑃(𝑎 ) is a property of the input (pre condition), and Q(𝑎 , 𝑏) is a 
property of the input and output (post condition), then correctness 
is defined as: 

• Partial correctness: 

   𝑃 𝑎  ⋀ Terminates 𝑃𝑟𝑜𝑔 𝑎 , 𝑏 ⇒ Q(𝑎 , 𝑏) 

• Total correctness: 

  𝑃 𝑎 ⇒  Terminates 𝑃𝑟𝑜𝑔 𝑎 , 𝑏 ∧ Q(𝑎 , 𝑏)   

• Totally correct programs terminate. A totally correct specification of 
the incrementing tasks is: 

  𝑎 ∈ ℕ ⇒ Terminates INC 𝑎, 𝑎 ∧ 𝑎=𝑎+1   
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Types of Correctness Properties 

There are 2 types of correctness properties: 
1. Safety properties These must always be true. 

Mutual exclusion Two processes must not interleave 
    certain sequences of instructions. 

Absence of deadlock  Deadlock is when a non-terminating 
    system cannot respond to any signal. 

 

2. Liveness properties These must eventually be true. 
Absence of starvation  Information sent is delivered. 

Fairness   That any contention must be resolved. 
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Correctness: Fairness 

• There are 4 different way to specify fairness. 
– Weak Fairness  If a process continuously makes a  

    request, eventually it will be granted. 

– Strong Fairness If a process makes a request infinitely 
    often, eventually it will be granted. 

– Linear waiting  If a process makes a request, it will be 
    granted before any other process is 
    granted the request more than once. 

– FIFO   If a process makes a request, it will 
    be granted before any other  
    process makes a later request. 
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Mutual Exclusion 
• A seen, a concurrent program must be correct in all allowable 

interleavings.  
• So there must be some sections of the different processes 

which cannot be allowed to be interleaved.  
• These are called critical sections. 
• We will attempt to solve the mutual exclusion problem using 

software first before more sophisticated solutions. 

CA463D Lecture Notes (Martin Crane 2013) 66 

# A critical section shared by different processes 

do true -> 

 Non_Critical_Section 

 Pre_protocol 

 Critical_Section 

 Post_protocol 

od 

 

  



Software Solutions to Mutual Exclusion Problem # 1 

• This solution satisfies mutual exclusion.  

• Cannot deadlock, as both P1, P2 would have to loop on Turn test infinitely and fail. 

– Implies Turn = 1 and Turn = 2 at the same time. 

• No starvation: requires one task to execute its CS infinitely often as other task remains in 
its pre-protocol. 

• Can fail in the absence of contention: if P1 halts in CS, P2 will always fail in pre-protocol. 

• Even if P1, P2 are guaranteed not to halt, both processes are forced to execute at the 
same rate. This, in general, is not acceptable. 
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#First proposed solution 

  

var Turn: int := 1; 

 

process P1 

do true -> 

 Non_Critical_Section 

 do Turn != 1 -> od 

 Critical_Section 

 Turn := 2 

od 

end 

 

 

 

 

 

 

 

 

 

 

 

process P2 

do true -> 

 Non_Critical_Section 

 do Turn != 2 -> od 

 Critical_Section 

 Turn := 1 

od 

end 

 



Software Solutions to Mutual Exclusion Problem # 2 

• The first attempt failed because both processes shared the same variable. 

• The Second Solution unfortunately violates the mutual exclusion requirement.  

• To prove this only need to find one interleaving allowing P1 & P2 into their CS at same time.  

• Starting from the initial state, we have: 
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# Second proposed solution 

  

var C1:int := 1 

var C2:int := 1 

 

process P1 

do true -> 

 Non_Critical_Section 

 do C2 != 1 ->   

 od 

 C1 := 0 

 Critical_Section 

 C1 := 1 

od 

end 

 

 

 

 

 

 

 

 

 

 

process P2 

do true -> 

 Non_Critical_Section 

 do C1 != 1 -> 

 od 

 C2 := 0 

 Critical_Section 

 C2 := 1 

od 

end 

 

P1 checks C2 and finds C2 = 1. 
P1 sets C1 = 0. 
P1 enters its critical section. 
 
 
 

P2 checks C1 and finds C1 = 1. 
P2 sets C2 = 0. 
P2 enters its critical section. 
QED 



Software Solutions to Mutual Exclusion Problem # 3 

• The problem with the last attempt is that once the pre-protocol loop is completed you cannot 
stop a process from entering its critical section.  

• So the pre-protocol loop should be considered as part of the critical section. 
• We can prove that the mutual exclusion property is valid. To do this we need to prove that the 

following equations are invariants: 
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var C1:int := 1 

var C2:int := 1 

 

process P1 

do true -> 

Non_Critical_Section # 𝒂𝟏 

C1 := 0  # 𝒃𝟏  
do C2 != 1 -> # 𝒄𝟏 

 od 

Critical_Section # 𝒅𝟏  
C1 := 1  # 𝒆𝟏 

od 

end 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

process P2 

do true -> 

Non_Critical_Section # 𝒂𝟐 

C2 := 0  # 𝒃𝟐  
do C1 != 1 -> # 𝒄𝟐 

  od 

Critical_Section # 𝒅𝟐 

C2 := 1  # 𝒆𝟐 

od 

end 

 

 C1 = 0 ≡ 𝑎𝑡(𝑐1) ⋁ 𝑎𝑡(𝑑1) ⋁ 𝑎𝑡(𝑒1)    Eqn(1) 
 C2 = 0 ≡ 𝑎𝑡(𝑐2) ⋁ 𝑎𝑡(𝑑2) ⋁ 𝑎𝑡(𝑒2)    Eqn(2) 
 ¬ 𝑎𝑡(𝑑1) ∧ 𝑎𝑡(𝑑2)     Eqn(3) 
 
(here 𝑎𝑡(𝑥)   𝑥 is the next instruction to be executed in that process.) 
 



• Eqn (1) is initially true:  

– Only the 𝑏1 → 𝑐1and 𝑒1 → 𝑎1 transitions can affect its truth.  

– But each of these transitions also changes the value of C1. 

• A similar proof is true for Eqn (2). 

• Eqn 3 is initially true, and  

– can only be negated by a 𝑐2 → 𝑑2 transition while 𝑎𝑡(𝑑1) is true.  

– But by Eqn (1), 𝑎𝑡(𝑑1) C1=0, so 𝑐2 → 𝑑2 cannot occur since this 
requires C1=1. Similar proof for process P2. 

• But there’s a problem with deadlock, if the program executes 
one instruction from each process alternately: 
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Software Solutions # 3 (cont’d) 

P1 assigns 0 to C1. 
P1 tests C2 and remains in its do loop 
 
 
 

P2 assigns 0 to C2 
P2 tests C1 and remains in its do loop 
 
Result Deadlock! 



• Problem with third proposed solution was that once a 
process indicated its intention to enter its CS, it also 
insisted on entering its CS.  

 

• Need some way for a process to relinquish its attempt if it 
fails to gain immediate access to its CS, and try again. 
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Software Solutions to Mutual Exclusion Problem # 4 



Software Solutions to Mutual Exclusion Problem # 4 

• This proposal has two drawbacks: 

1. A process can be starved.  

 Can find interleavings where a process can never enter its critical section. 

2. The program can livelock.  

 This is a form of deadlock. In deadlock there is no possible interleaving which allows the 
 processes to enter their CS. In livelock, some interleavings succeed, but there are sequences 
 which do not succeed. 
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var C1:int := 1 

var C2:int := 1 

 

process P1 

do true -> 

Non_Critical_Section  

C1 := 0 

do true -> 

if C2 =1->exit fi 

C1 := 1 

C1 := 0 

od 

Critical_Section  

C1 := 1 

od 

end 

 

 

 

 

 

 

 

 

 

process P2 

do true -> 

Non_Critical_Section  

C2 := 0 

do true -> 

if C1 =1->exit fi 

C2 := 1 

C2 := 0 

od 

Critical_Section  

C2 := 1 

od 

end 

 



Proof of Failure of Attempt 4:  

1. By Starvation 

 

 

 

 

 

2. By Livelock 
 

 

CA463D Lecture Notes (Martin Crane 2013) 73 

Software Solutions # 4 (cont’d) 

P1 sets C1 to 0. 
P1 completes a full cycle: 
 Checks C2 
 Enters Critical Section 
 Resets C1 
 Executes non-Critical Section 
 Sets C1 to 0 
 
 
 
 

P2 sets C2 to 0 
P2 checks C1, sees C1=0 & resets C2 to 1 
 
 
 
 
P2 sets C2 to 0      and back  
 
 
 P1 sets C1 to 0. 

P1 tests C2 and remains in its do loop 
P1 resets C1 to 1 to relinquish  
 attempt to enter CS 
P1 sets C1 to 0 
 

P2 sets C2 to 0 
P2 tests C1 and remains in its do loop 
P2 resets C2 to 1 to relinquish  
 attempt to enter CS 
P2 sets C2 to 0  
etc 



Dekker’s Algorithm 
• A combination of the first and fourth 

proposals:  
– The first proposal explicitly passed the 

right to enter the CSs between the 
processes,  

– whereas the fourth proposal had its 
own variable to prevent problems in the 
absence of contention.  

• In Dekker’s algorithm the right to 
insist on entering a CS is explicitly 
passed between processes. 
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C2=1?

Turn=2

Set C1=1

Turn=1? C1=0

No

Yes

P2 Cannot enter CS now

Yes =>others turn to insist

to let other in

Yes to enter CS

No => contention



Dekker’s Algorithm (cont’d) 
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var C1:int := 1 

var C2:int := 1 

var Turn:int := 1 

 

process P1 

do true -> 

 

 Non_Critical_Section  

 C1 := 0 

 do true -> 

if C2 = 1-> exit fi 

if Turn = 2 -> 

  C1 := 1 

  do Turn !=1 -> od 

  C1 := 0 

fi 

od 

Critical_Section  

C1 := 1 

Turn := 2 

od 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

process P2 

do true -> 

 

 Non_Critical_Section  

 C2 := 0 

 do true -> 

if C1 = 1-> exit fi 

if Turn = 1 -> 

  C2 := 1 

  do Turn !=2 -> od 

  C2 := 0 

fi 

 od 

 Critical_Section  

 C2 := 1 

 Turn := 1 

od 

end 



Mutual Exclusion for n Processes:  
The Bakery Algorithm 

• Dekker’s Algorithm is the solution to the mutual exclusion problem 
for 2 processes. 

• For the N process mutual exclusion problem, there are many 
algorithms; all complicated and relatively slow to other methods.  

• One such is the Bakery Algorithm where each process takes a 
numbered ticket (whose value constantly increases) when it wants to 
enter its CS.  

• The process with the lowest current ticket gets to enter its CS.  

• This algorithm is not practical because: 
– the ticket numbers will be unbounded if some process is always in its critical 

section, and 

– even in the absence of contention it is very inefficient as each process must 
query the other processes for their ticket number. 
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Mutual Exclusion for N Processes:  
The Bakery Algorithm (cont’d) 

CA463D Lecture Notes (Martin Crane 2013) 77 

var Choosing: [N] int 

var Number: [N] int 

 

# Choosing and Number arrays initialised to zero 

 

process P(i:int) 

do true -> 

 Non_Critical_Section 

 Choosing [i] := 1 

 Number [i] := 1 + max (Number) 

 Choosing [i] := 0 

 fa j := 1 to N -> 

if j != i -> 

 do Choosing [j] != 0 -> od 

 do true -> 

if (Number [j] = 0) or(Number [i] < Number [j]) or  

   ((Number [i] = Number [j]) and (i < j)) -> exit 

fi 

 od 

fi 

 af 

 Critical_Section 

 Number [i] := 0 

od 

end 

 

  


