
Lecture 2: Intro to Concurrent
Processing

• The SR Language.

• Correctness and Concurrency.

• Mutual Exclusion & Critical Sections.

• Software Solutions to Mutual Exclusion.

• Dekker’s Algorithm.

• The Bakery Algorithm.

 CA463D Lecture Notes (Martin Crane 2013) 50

A Model of Concurrent Programming

• A concurrent program may be defined as the interleaving of sets of
sequential atomic instructions.
– i.e. a set of interacting sequential processes, execute at the same time, on the

same or different processors.

– processes are said to be interleaved, i.e. at any given time each processor is
executing one of the instructions of the sequential processes.

– relative rate at which the instructions of each process are executed is not
important.

• Each sequential process consists of a series of atomic instructions.

• Atomic instruction is an instruction that once it starts, proceeds to
completion without interruption.

• Different processors have different atomic instructions , and this can
have a big effect.

CA463D Lecture Notes (Martin Crane 2013) 51

My First Piece of SR Code

• Obviously different interleavings can produce different results.
• This code is written in a language called SR or Synchronising

Resources.
• SR has an exceptionally rich set of concurrency mechanisms.
• It will serve as the main language for demonstrating concurrency in

this course.
• Details on SR syntax can be found at

http://elvis.rowan.edu/~hartley/OSusingSR/SR.html

CA463D Lecture Notes (Martin Crane 2013) 52

Var N : Int := 0;

Two Processes share a common

variable

Process P1

 N := N + 1

end

Process P2

 N := N + 1

end

A Digression into SR
• SR concurrent programming language has been around, in various

forms, for a number of years.

• Later versions have provided additional mechanisms for remote
procedure call, dynamic process creation, and semaphores, as well
as a means for specifying distribution of program modules.

• An SR program can execute within multiple address spaces, located
on multiple physical machines.

• Processes within a single address space can also share objects.

• Thus, SR supports programming in distributed environments as well
as in shared-memory environments.

CA463D Lecture Notes (Martin Crane 2013) 53

A Digression into SR (cont’d)

• SR’s model of computation allows a program to be split into one or
more address spaces called virtual machines.

• Each virtual machine defines an address space on one physical
machine.

• Virtual machines are created dynamically and referenced indirectly
through capability variables.

• Virtual machines contain instances of two related kinds of modular
components: globals and resources. Hence an SR program is a
collection of resources and globals.

CA463D Lecture Notes (Martin Crane 2013) 54

A Digression into SR (cont’d)
• The figure summarizes SR’s model of computation.

• In its simplest form, an SR program consists of a single VM running
on one physical machine, maybe a shared-memory multiprocessor.

• A program can also consist of multiple virtual machines executing
on multiple physical machines.

• Hybrid forms are possible and in fact useful.

CA463D Lecture Notes (Martin Crane 2013) 55

A Digression into SR (cont’d)
• Data & processor(s) are shared within a VM; different VMs can

be placed on (distributed across) different physical machines.

• Processes on the same or different VMs can communicate
through operation invocation.

• Operations may be invoked directly through the operation’s
declared name or through a resource capability variable or
indirectly through an operation capability variable.

• Formally, a resource is a template for resource instances from
which resource instances can be dynamically created and
destroyed.

• A global is basically a single, unparameterised, automatically
created instance of a resource.

 CA463D Lecture Notes (Martin Crane 2013) 56

SR: Resources
• A resource is an abstract data object that consists of two parts:

– a specification that specifies the interface of the resource, and

– a body with code implementing the behaviour of abstract data object.

• The general form of a resource is:

resource resource_name

 imports # maybe it uses other resources (more later)

 constants, types, or operation declarations

body resource_name (parameters)

 imports

 declarations, statements, procs

 final code

end resource_name

CA463D Lecture Notes (Martin Crane 2013) 57

SR: Resources (cont’d)
• Some code to define a Stack resource is shown

CA463D Lecture Notes (Martin Crane 2013) 58

resource Stack

type results = enum(OK,OFLOW,UFLOW)

op push (item:int) returns r:result

op pop (res_item:int) returns

 r:result

body Stack (size:int)

var store [1:size]:int, top:int := 0

proc push (item) returns r

 if top < size ->

 store[++top] := item

 r := OK

 [] top = size ->

 r := OFLOW

 fi

end

proc pop (item) returns r

 if top > 0 ->

 item := store[top--]

 r := OK

 [] top = 0 ->

 r := UFLOW

 fi

end

end Stack

SR: Creating Resources Instances
• Since several instances of a resource can be created some mechanism

is necessary to distinguish between the different resource instances.

• Done by resource capabilities, pointers to a specific resource instance.

• The code below creates 2 instances of a stack resource:
resource Stack_User

import Stack # import as want to use Stack’s procs

var x: Stack.result

var s1,s2: cap Stack # stack capability variables, each with own

var y:int # local vars store & top

s1:=create Stack(10) # create a stack of size 10

s2:=create Stack(20) # create a stack of size 20

 ...

s1.push(4); # how operations can be ref’d outside Stack via CVs

s1.push (37); s2.push (98)

if (x := s1.pop(y)) != OK -> ... fi

if (x := s2.pop(y)) != OK -> ... fi

 ...

end

CA463D Lecture Notes (Martin Crane 2013) 59

SR: Destroying Resources Instances

• The execution of an SR program begins with the implicit creation of
one instance of the program’s main resource.

• The initial code of the main resource can in turn create instances of
other resources.

• A resource instance can be destroyed by the destroy statement:

 destroy resource_capability

• When an SR program terminates, the initially created instance of the
main resource is destroyed after executing its final code.

• This final code can in turn destroy other instances of resources.

CA463D Lecture Notes (Martin Crane 2013) 60

SR Processes
• SR uses the process as its unit of concurrent computation. This is an independent

thread of control executing sequential code, with the form

 process process_name (quantifier, quantifier, ...)

 block

 end

• The code demonstrates the use of processes for parallel matrix multiplication.

CA463D Lecture Notes (Martin Crane 2013) 61

resource main()

const N := 20

var a[N,N], b[N,N], c[N,N]: real

read in some initial values for a,b

 ...

multiply a,b in parallel,result=c

process multiply(i:=1 to N,j:=1 to N)

 var inner_prod:real := 0.0

 fa k := 1 to N ->

inner_prod+:=a[i,k]*b[k,j]

 af

 c[i,j] := inner_prod

end

final

 # output result in c

 fa i := 1 to N ->

fa j:= 1 to N ->

 write (c[i, j], ‘ ‘)

af

write

 af

end

end mult

A First Attempt to Define Correctness

• If the processor includes instructions like INC then this program will
be correct no matter which instruction is executed first.

• If all arithmetic must be performed in registers then the following
interleaving does not produce the desired results.

P1: load reg, N

P2: load reg, N

P1: add reg, #1

P2: add reg, #1

P1: store reg, N

P2: store reg, N

• A concurrent program must be correct under all possible
interleavings.

CA463D Lecture Notes (Martin Crane 2013) 62

Correctness: A More Formal Definition

• If 𝑃(𝑎) is a property of the input (pre condition), and Q(𝑎 , 𝑏) is a
property of the input and output (post condition), then correctness
is defined as:

• Partial correctness:

 𝑃 𝑎 ⋀ Terminates 𝑃𝑟𝑜𝑔 𝑎 , 𝑏 ⇒ Q(𝑎 , 𝑏)

• Total correctness:

 𝑃 𝑎 ⇒ Terminates 𝑃𝑟𝑜𝑔 𝑎 , 𝑏 ∧ Q(𝑎 , 𝑏)

• Totally correct programs terminate. A totally correct specification of
the incrementing tasks is:

 𝑎 ∈ ℕ ⇒ Terminates INC 𝑎, 𝑎 ∧ 𝑎=𝑎+1

CA463D Lecture Notes (Martin Crane 2013) 63

Types of Correctness Properties

There are 2 types of correctness properties:
1. Safety properties These must always be true.

Mutual exclusion Two processes must not interleave
 certain sequences of instructions.

Absence of deadlock Deadlock is when a non-terminating
 system cannot respond to any signal.

2. Liveness properties These must eventually be true.
Absence of starvation Information sent is delivered.

Fairness That any contention must be resolved.

CA463D Lecture Notes (Martin Crane 2013) 64

Correctness: Fairness

• There are 4 different way to specify fairness.
– Weak Fairness If a process continuously makes a

 request, eventually it will be granted.

– Strong Fairness If a process makes a request infinitely
 often, eventually it will be granted.

– Linear waiting If a process makes a request, it will be
 granted before any other process is
 granted the request more than once.

– FIFO If a process makes a request, it will
 be granted before any other
 process makes a later request.

CA463D Lecture Notes (Martin Crane 2013) 65

Mutual Exclusion
• A seen, a concurrent program must be correct in all allowable

interleavings.
• So there must be some sections of the different processes

which cannot be allowed to be interleaved.
• These are called critical sections.
• We will attempt to solve the mutual exclusion problem using

software first before more sophisticated solutions.

CA463D Lecture Notes (Martin Crane 2013) 66

A critical section shared by different processes

do true ->

 Non_Critical_Section

 Pre_protocol

 Critical_Section

 Post_protocol

od

Software Solutions to Mutual Exclusion Problem # 1

• This solution satisfies mutual exclusion.

• Cannot deadlock, as both P1, P2 would have to loop on Turn test infinitely and fail.

– Implies Turn = 1 and Turn = 2 at the same time.

• No starvation: requires one task to execute its CS infinitely often as other task remains in
its pre-protocol.

• Can fail in the absence of contention: if P1 halts in CS, P2 will always fail in pre-protocol.

• Even if P1, P2 are guaranteed not to halt, both processes are forced to execute at the
same rate. This, in general, is not acceptable.

 CA463D Lecture Notes (Martin Crane 2013) 67

#First proposed solution

var Turn: int := 1;

process P1

do true ->

 Non_Critical_Section

 do Turn != 1 -> od

 Critical_Section

 Turn := 2

od

end

process P2

do true ->

 Non_Critical_Section

 do Turn != 2 -> od

 Critical_Section

 Turn := 1

od

end

Software Solutions to Mutual Exclusion Problem # 2

• The first attempt failed because both processes shared the same variable.

• The Second Solution unfortunately violates the mutual exclusion requirement.

• To prove this only need to find one interleaving allowing P1 & P2 into their CS at same time.

• Starting from the initial state, we have:

CA463D Lecture Notes (Martin Crane 2013) 68

Second proposed solution

var C1:int := 1

var C2:int := 1

process P1

do true ->

 Non_Critical_Section

 do C2 != 1 ->

 od

 C1 := 0

 Critical_Section

 C1 := 1

od

end

process P2

do true ->

 Non_Critical_Section

 do C1 != 1 ->

 od

 C2 := 0

 Critical_Section

 C2 := 1

od

end

P1 checks C2 and finds C2 = 1.
P1 sets C1 = 0.
P1 enters its critical section.

P2 checks C1 and finds C1 = 1.
P2 sets C2 = 0.
P2 enters its critical section.
QED

Software Solutions to Mutual Exclusion Problem # 3

• The problem with the last attempt is that once the pre-protocol loop is completed you cannot
stop a process from entering its critical section.

• So the pre-protocol loop should be considered as part of the critical section.
• We can prove that the mutual exclusion property is valid. To do this we need to prove that the

following equations are invariants:

CA463D Lecture Notes (Martin Crane 2013) 69

var C1:int := 1

var C2:int := 1

process P1

do true ->

Non_Critical_Section # 𝒂𝟏

C1 := 0 # 𝒃𝟏
do C2 != 1 -> # 𝒄𝟏

 od

Critical_Section # 𝒅𝟏
C1 := 1 # 𝒆𝟏

od

end

process P2

do true ->

Non_Critical_Section # 𝒂𝟐

C2 := 0 # 𝒃𝟐
do C1 != 1 -> # 𝒄𝟐

 od

Critical_Section # 𝒅𝟐

C2 := 1 # 𝒆𝟐

od

end

 C1 = 0 ≡ 𝑎𝑡(𝑐1) ⋁ 𝑎𝑡(𝑑1) ⋁ 𝑎𝑡(𝑒1) Eqn(1)
 C2 = 0 ≡ 𝑎𝑡(𝑐2) ⋁ 𝑎𝑡(𝑑2) ⋁ 𝑎𝑡(𝑒2) Eqn(2)
 ¬ 𝑎𝑡(𝑑1) ∧ 𝑎𝑡(𝑑2) Eqn(3)

(here 𝑎𝑡(𝑥) 𝑥 is the next instruction to be executed in that process.)

• Eqn (1) is initially true:

– Only the 𝑏1 → 𝑐1and 𝑒1 → 𝑎1 transitions can affect its truth.

– But each of these transitions also changes the value of C1.

• A similar proof is true for Eqn (2).

• Eqn 3 is initially true, and

– can only be negated by a 𝑐2 → 𝑑2 transition while 𝑎𝑡(𝑑1) is true.

– But by Eqn (1), 𝑎𝑡(𝑑1) C1=0, so 𝑐2 → 𝑑2 cannot occur since this
requires C1=1. Similar proof for process P2.

• But there’s a problem with deadlock, if the program executes
one instruction from each process alternately:

CA463D Lecture Notes (Martin Crane 2013) 70

Software Solutions # 3 (cont’d)

P1 assigns 0 to C1.
P1 tests C2 and remains in its do loop

P2 assigns 0 to C2
P2 tests C1 and remains in its do loop

Result Deadlock!

• Problem with third proposed solution was that once a
process indicated its intention to enter its CS, it also
insisted on entering its CS.

• Need some way for a process to relinquish its attempt if it
fails to gain immediate access to its CS, and try again.

CA463D Lecture Notes (Martin Crane 2013) 71

Software Solutions to Mutual Exclusion Problem # 4

Software Solutions to Mutual Exclusion Problem # 4

• This proposal has two drawbacks:

1. A process can be starved.

 Can find interleavings where a process can never enter its critical section.

2. The program can livelock.

 This is a form of deadlock. In deadlock there is no possible interleaving which allows the
 processes to enter their CS. In livelock, some interleavings succeed, but there are sequences
 which do not succeed.

CA463D Lecture Notes (Martin Crane 2013) 72

var C1:int := 1

var C2:int := 1

process P1

do true ->

Non_Critical_Section

C1 := 0

do true ->

if C2 =1->exit fi

C1 := 1

C1 := 0

od

Critical_Section

C1 := 1

od

end

process P2

do true ->

Non_Critical_Section

C2 := 0

do true ->

if C1 =1->exit fi

C2 := 1

C2 := 0

od

Critical_Section

C2 := 1

od

end

Proof of Failure of Attempt 4:

1. By Starvation

2. By Livelock

CA463D Lecture Notes (Martin Crane 2013) 73

Software Solutions # 4 (cont’d)

P1 sets C1 to 0.
P1 completes a full cycle:
 Checks C2
 Enters Critical Section
 Resets C1
 Executes non-Critical Section
 Sets C1 to 0

P2 sets C2 to 0
P2 checks C1, sees C1=0 & resets C2 to 1

P2 sets C2 to 0 and back

 P1 sets C1 to 0.

P1 tests C2 and remains in its do loop
P1 resets C1 to 1 to relinquish
 attempt to enter CS
P1 sets C1 to 0

P2 sets C2 to 0
P2 tests C1 and remains in its do loop
P2 resets C2 to 1 to relinquish
 attempt to enter CS
P2 sets C2 to 0
etc

Dekker’s Algorithm
• A combination of the first and fourth

proposals:
– The first proposal explicitly passed the

right to enter the CSs between the
processes,

– whereas the fourth proposal had its
own variable to prevent problems in the
absence of contention.

• In Dekker’s algorithm the right to
insist on entering a CS is explicitly
passed between processes.

CA463D Lecture Notes (Martin Crane 2013) 74

C2=1?

Turn=2

Set C1=1

Turn=1? C1=0

No

Yes

P2 Cannot enter CS now

Yes =>others turn to insist

to let other in

Yes to enter CS

No => contention

Dekker’s Algorithm (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 75

var C1:int := 1

var C2:int := 1

var Turn:int := 1

process P1

do true ->

 Non_Critical_Section

 C1 := 0

 do true ->

if C2 = 1-> exit fi

if Turn = 2 ->

 C1 := 1

 do Turn !=1 -> od

 C1 := 0

fi

od

Critical_Section

C1 := 1

Turn := 2

od

end

process P2

do true ->

 Non_Critical_Section

 C2 := 0

 do true ->

if C1 = 1-> exit fi

if Turn = 1 ->

 C2 := 1

 do Turn !=2 -> od

 C2 := 0

fi

 od

 Critical_Section

 C2 := 1

 Turn := 1

od

end

Mutual Exclusion for n Processes:
The Bakery Algorithm

• Dekker’s Algorithm is the solution to the mutual exclusion problem
for 2 processes.

• For the N process mutual exclusion problem, there are many
algorithms; all complicated and relatively slow to other methods.

• One such is the Bakery Algorithm where each process takes a
numbered ticket (whose value constantly increases) when it wants to
enter its CS.

• The process with the lowest current ticket gets to enter its CS.

• This algorithm is not practical because:
– the ticket numbers will be unbounded if some process is always in its critical

section, and

– even in the absence of contention it is very inefficient as each process must
query the other processes for their ticket number.

CA463D Lecture Notes (Martin Crane 2013) 76

Mutual Exclusion for N Processes:
The Bakery Algorithm (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 77

var Choosing: [N] int

var Number: [N] int

Choosing and Number arrays initialised to zero

process P(i:int)

do true ->

 Non_Critical_Section

 Choosing [i] := 1

 Number [i] := 1 + max (Number)

 Choosing [i] := 0

 fa j := 1 to N ->

if j != i ->

 do Choosing [j] != 0 -> od

 do true ->

if (Number [j] = 0) or(Number [i] < Number [j]) or

 ((Number [i] = Number [j]) and (i < j)) -> exit

fi

 od

fi

 af

 Critical_Section

 Number [i] := 0

od

end

